1. Electric Charges and Fields
hard

The electric field in a region of space is given by, $\overrightarrow E  = {E_0}\hat i + 2{E_0}\hat j$ where $E_0\, = 100\, N/C$. The flux of the field through a circular surface of radius $0.02\, m$ parallel to the $Y-Z$ plane is nearly

A

$0.125\,Nm^2/C$

B

$0.02\,Nm^2/C$

C

$0.005\,Nm^2/C$

D

$3.14\,Nm^2/C$

(JEE MAIN-2014)

Solution

$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{i}}+2 \mathrm{E}_{0} \hat{\mathrm{j}}$

Given, $\mathrm{E}_{0}=100 \,\mathrm{N} / \mathrm{c}$

So, $\overrightarrow{\mathrm{E}}=100 \hat{\mathrm{i}}+200 \hat{\mathrm{j}}$

Radius of circular surface $=0.02\, \mathrm{m}$

Area $=\pi r^{2}=\frac{22}{7} \times 0.02 \times 0.02$

$=1.25 \times 10^{-3} \hat{\mathrm{i}}\, \mathrm{m}^{2}$ [Loop is parallel to $\mathrm{Y}-\mathrm{Z}$ plane ]

Now, flux $(\phi)=$ $EA \,cos$ $\theta$

$=(100 \hat{\mathrm{i}}+200 \hat{\mathrm{j}}) \cdot 1.25 \times 10^{-3} \mathrm{i} \cos \theta^{\circ}\left[\theta=0^{\circ}\right]$

$=125 \times 10^{-3}\, \mathrm{Nm}^{2} / \mathrm{c}$

$=0.125\, \mathrm{Nm}^{2} / \mathrm{c}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.